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ABSTRACT 
Periodic foundationis a new type of seismic base isolation system. It is inspired by the periodic material crystal 

lattice in the solid state physics. This kind of material has a unique property, which is termed as frequency band 

gap that is capable of blocking incoming waves having frequencies falling within the band gap. Consequently, 

seismic waves having frequencies falling within the frequency band gap are blocked by the periodic foundation. 

The ability to block the seismic waveshas put this kind of foundation as a prosperous next generation of seismic 

base isolators. This paper provides analytical study on the one dimensional (1D) type periodic foundations to 

investigate their seismic performance. The general idea of basic theory of one dimensional (1D) periodic 

foundations is first presented.Then, the parametric studies considering infinite and finite boundary conditions are 

discussed. The effect of superstructure on the frequency band gap is investigated as well. Based on the analytical 

study, a set of equations is proposed for the design guidelines of 1D periodic foundations for seismic base 

isolation of structures. 

Keywords–finite element, frequency band gap, one dimensional periodic foundation, phononic crystal, seismic 

isolation 

 

I. INTRODUCTION 
The research on periodic material has shown that 

an infinite series of lattice layers has the ability to 

manipulate certain waves travelling through its 

medium [1–9]. Periodic material is classified into 

photonic crystal, which can manipulate 

electromagnetic waves and phononic crystal, which 

can manipulate elastic waves. According to the 

number of directions where the unit cell is repeated, 

periodic material can be classified as: one-

dimensional (1D), two-dimensional (2D) and three-

dimensional (3D) periodic material. This man-made 

material has the property of preventing the 

propagation of waves having frequencies within 

certain frequency bands through the crystal’s 

medium. These frequency bands are termed as 

frequency band gaps or attenuation zones [10]. 

Utilizing the unique feature of the 

periodicmaterial especially phononic crystal, 

researchers in civil engineering field have started to 

apply the crystal lattice into the structural element. In 

the beginning, mechanical and civil engineering 

researchers [11–15] studied the periodic beams and 

found the existence of flexural wave band gaps in the 

periodic beams. Then, theoretical and experimental 

studies were conducted to investigate the application 

of periodic rod on offshore platforms to isolate the 

sea wave [16–17]. Subsequently, the phononic crystal 

was applied to the structural foundations to isolate 

seismic waves to protect the superstructure, which 

later known as periodic foundation. Although the 

idea of periodic foundations is relatively new, 

experimental testing on periodic foundations has 

already been conducted by several researchers[18–

20]. Due to its uniquewave isolation mechanism, 

periodic foundation can isolate superstructure from 

the incoming seismic waves without having a large 

relative horizontal displacement in the isolation layer 

that generally occurs in the conventional seismic 

isolation, such as: rubber bearings and friction 

pendulum systems[21]. 

 

II. BASIC THEORY OF 1D PERIODIC 

MATERIAL 
In 1D periodic material, the crystal lattice 

possesses periodicity in one direction.Consider that 

the unit cell is composed of N layersin which the 

periodicity is in z direction, as shown in Fig.1.The 

equation of motion in each layer n subjected to elastic 

wave is shown in equation (1) 
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Figure 1.One dimensional periodic material 
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The Cn constant is expressed in equation (2)and 

equation (3)for input wavesof S-Wave and P-Wave, 

respectively. 

/n n nC    (2) 

( 2 ) /n n n nC      (3) 

Where 𝜆𝑛  and𝜇𝑛  are the Lamé elastic constantsand 

𝜌𝑛 is material density at layer n. Consider a steady 

state oscillatory waves of angular frequency: 

   , ei t
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Substituting equation (4) into equation (1) yields: 
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The general displacement solution of equation (5)is 

expressed as: 

( ) sin( / ) sin( / )n n n n n n n nu z A z C B z C    (6) 

In which An and Bn are the amplitudes of the general 

displacement solution on layer n. Subsequently, the 

shear stress component on the periodic foundation 

can be calculated fromequation (7). 
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Equation (6) and equation (7) are arranged into 

matrix form. 

( ) ( )n nz zn n nw H ψ  (8) 

or 
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The left hand side vector of equation (8) at the 

bottom of layer n is defined as𝐰𝐧
𝐛which gives 

information regarding the displacement and the stress 

at the bottom of layer n. As for the top of layer n, the 

left hand side vector is defined as 𝐰𝐧
𝐭which gives the 

information of displacement and the stress at the top 

of layer n. 

(0) (0) b

n n n nw w H ψ  (10) 

( ) ( )n nz z t

n n n nw w H ψ  (11) 

Equation (10) can be related to equation (11)

through a transfer matrix 𝐓𝐧. 

t b

n n nw T w  (12) 

Hence, the transfer matrix 𝐓𝐧 for a single layer n is: 

 
1

( ) (0)nZ



n n n
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Each layer interface of the unit cell is assumed to be 

perfectly bonded and hence the displacement and 

shear stress need to satisfy continuity. Therefore, the 

displacement and shear stress of the top of layer n is 

equal to that of the bottom of layer n+1. 

b t

n+1 nw w  (14) 

The relation of displacement and shear stress of the 

bottom and top surfaces of the unit cell containing N 

layers are: 

 ... ...

 

  

t b t

N N N N N-1

b b
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The displacement and shear stress vector of top 

and bottom surface of the unit cell is 𝐰𝐭 = 𝐰𝐍
𝐭 and 

𝐰𝐛 = 𝐰𝟏
𝐛. Equation (15)can be shortened into: 

(ω)t b
w T w  (16) 

Based on the Bloch-Floquent theorem the 

periodic boundary conditions can be expressed as: 

eikat b
w w  (17) 

Wherea is the unit cell thickness. Subtraction of 

equation (17) by equation (16) yields: 

( ) e 0ika   
b

T I w  (18) 

The nontrivial solution can be achieved when: 

( ) e 0ika  T I  (19) 

Equation (19) is the so called Eigenvalue 

problem, with e𝑖𝑘𝑎  equal to the Eigenvalue of the 

transformation matrix T(ω). Thus, the relation of 

wave number k and frequency ω can be obtained by 

solving the corresponding Eigenvalue problem. The 

relationship between the wave number and frequency 

forms the dispersion curve, which provides the 

information of the frequency band gaps. 

 

III. PARAMETRICSTUDY OF 1D PERIODIC 

FOUNDATIONS WITH INFINITE UNIT 

CELLS 
The most simple unit cell of 1D periodic 

foundation is the two layered unit cell. In this 

configuration, a single unit cell consists of 2 different 

layers; A and B; in which hA  and hBrepresents the 

height of each of both layers A and B, respectively. 

Consider rubber and concrete as the unit cell’s 

component with material properties as shown in 

Table 1 and each layer height, hrand hc , equals to 0.2 

m as shown in Fig.2. 

 
Figure 2. Benchmark unit cell of 1D periodic 

foundation 
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Table 1.Material properties for benchmark unit 

cell of 1D periodic foundation 

Component 

Young’s 

modulus 

(MPa) 

Density 

(kg/m
3
) 

Poisson’s 

ratio 

Concrete 31400 2300 0.2 

Rubber 0.58 1300 0.463 

 

 

 

 
 

Figure 3. Dispersion curve of the periodic 

foundation with benchmark unit cell 

 

Fig.3shows the dispersion curves of the periodic 

foundation with benchmark unit cell subjected to 

transverse wave (S-Wave) and longitudinal wave (P-

Wave). The curves were obtained by solving the 

Eigenvalue problem stated in equation (19). The first 

two frequency band gaps under S-Wave are observed 

at 13.51 Hz– 30.87 Hz and 36.65 Hz to 50 Hz. While 

the first frequency band gap under P-Wave are 51.5 

Hz – 117.6 Hz. 

By changing each of the material and geometric 

properties while keeping the rest of the properties the 

same as in the benchmark unit cell, the effect of each 

property on the first frequency band gap can be 

observed.  

 

 

 

 

 
Figure 4.Effect of rubber material properties on 

the first frequency band gap 

 

Fig.4 shows the effect of rubber material 

properties on the first frequency band gap. The 

starting frequency of the first frequency band gap 

represented by the blue curve and the width of the 

first band gap (obtained by subtracting the starting 

frequency from the end frequency of the first band 

gap) represented by the red curve increase rapidly 

with the increase of the Young’s modulus of rubber. 

The increase of rubber density would slightly reduce 

the starting frequency of the first frequency band gap 

and would greatly reduce the width of the band gap. 

The effect of Poisson’s ratio is different when the 

periodic foundation is subjected to S-Wave or P-

Wave. While both the starting and the width of the 

frequency band gap are steadily decreasing as the 

Poisson’s ratio increases under the S-Wave, the 

starting and the width of the frequency band gap 

increase tremendously as the Poison’s ratio gets 

closer to 0.5 under the P-Wave. This is so because 

the volumetric locking occurs in the continuum body 

subjected to the P-Wave. As shown in equation (3), 

the constant C for P-Wave is a function of the first 

Lamé constant λ. As the Poison’s ratio gets closer to 

0.5, theλ value goes to infinite causing the volumetric 

locking that makes the continuum body to become 

very stiff. 

Fig.5shows the effect of each of the concrete 

material properties on the first frequency band gap. It 

is observed that the Young’s modulus and Poisson’s 

ratio of concrete does not affect the first frequency 

band gap. The increase of concrete density would 

allow lower starting frequency and wider attenuation 

zone, which is the most desired band gap for periodic 

foundation. 
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Figure 5.Effect of concretematerial properties on 

the first frequency band gap 

 

 
Figure 6.Effect of rubber to concrete thickness 

ratio on the first frequency band gap 

 

 
Figure 7.Effect of unit thickness on the first 

frequency band gap 

 

Fig.6shows the effect of rubber to concrete 

thickness ratio on the frequency of the band gap. It is 

shown that the increase of the rubber to concrete 

thickness ratio would reduce the starting frequency of 

the first attenuation zone when the thickness ratio is 

lower than 1.5. For the thickness ratio greater than 

1.5, the starting frequency of the first attenuation 

zone would increase along with the increase of the 

thickness ratio. Meanwhile, the width of the 

attenuation zone keeps decreasing with the increase 

of the thickness ratio. Fig.7shows that the increase of 

the unit cell thickness would result in the reduction of 

the starting frequency and the width of the frequency 

band gap. 

 

IV. PARAMETRIC STUDY OF 1D PERIODIC 

FOUNDATIONS WITH FINITE NUMBER 

OF UNIT CELLS 
The parametric studies conducted in Section III 

have provided the insight of how the material and 

geometric properties affect the frequency band gap. 

However, the real structures would have a finite 

geometry. Thus, the number of unit cells and the 

plane area has to be finite.  In order to simulate the 

behavior of periodic foundation as close as possible 

to the reality, finite element model of 1D periodic 

foundations was utilized. The material properties 

were assumed to be linear elastic. 

 

4.1. Effect of periodic foundation plane size 

This section investigates the plane size effect of 

the periodic foundation on the response inside the 

frequency band gap. The periodic foundation was 

modeled using one unit cell consisting of a rubber 

layer and a concrete layer. The unit cell was placed 

on top of a concrete base layer. Each layer has a 

thickness of 0.2 m. The material properties are listed 

in Table 2. Three cases were investigated: Case A1 

with plane size 1m x 1m, Case A2 with plane size 2m 

x 2m, and Case A3 with plane size 3m x 3m. All 

three cases are shown in Fig.8. 

 

Table 2. Material properties 

Material 

Young’s 

modulus 

(MPa) 

Density 

(kg/m
3
) 

Poisson’s 

ratio 

Concrete 40000 2300 0.2 

Rubber 0.1586 1277 0.463 

 

 

 

 
Figure 8. (a) Case A1 (1m x 1m); (b) Case A2 (2m 

x 2m); (c) Case A3 (3m x 3m) 



WitartoWitarto et al. Int. Journal of Engineering Research and Applications                www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 1, (Part - 6) January 2016, pp.05-15  

 www.ijera.com                                                                                                                                  9|P a g e  

All three cases were subjected to the vibration of 

a scanning frequency ranging from 0 to 50 Hz which 

is a typical main frequency content of seismic waves. 

The responses of these foundations are presented in 

the form of frequency response function (FRF) 

defined as 20log 𝛿𝑜/𝛿𝑖 , where 𝛿𝑜  is the 

instantaneus displacement amplitude recorded at the 

top of the periodic foundation and 𝛿𝑖  is the amplitude 

of instantaneous displacement input at the base of the 

periodic foundation.  

The FRF of all three foundations are presented in 

Fig.9. The negative value shows that the output 

response is smaller than the input. The yellow gaps 

are the theoretical frequency band gap obtained from 

solving the wave equation as described in Section II. 

It is observed that inside the theoretical frequency 

band gap, all three foundations show response 

reduction. Occasional spikes, due to rocking modes, 

inside the frequency band gap that goes to positive 

value were observed on the curves. However, the 

larger the plane size, which is the closer it is to the 

theoretical infinite boundary condition, the less 

spikes occur inside the frequency band gap because 

the rocking modes are eliminated. 

 

 
Figure 9. Frequency response function of periodic 

foundation with different plane size 

 

4.2. Effect of number of unit cells 

This section investigates the effect of number of 

unit cells on the response inside the frequency band 

gap. Three cases of periodic foundation were 

investigated. The first case (designated as Case B1) is 

a periodic foundation with one unit cell and plane 

size of 3m x 3m, similar to Case A3 studied in 

Section 4.1. The second case (designated as Case B2) 

is a periodic foundation with two unit cells. The third 

case (designated as Case B3) is a periodic foundation 

with three unit cells. The illustration of each of the 

three cases is shown inFig.10. 

 

 

 
Figure 10.(a) Case B1 (one unit cell); (b) Case B2 

(two unit cells); (c) Case B3 (three unit cells) 

 

As observed inFig.11, the FRF value inside the 

theoretical frequency band gap gets lower as the 

number of unit cells increases. The lower FRF value 

represents more response reduction. The more 

number of unit cells is, the greater the response 

reduction because it is closer to the theoretical 

infinite number of unit cells condition. 
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Figure 11.Frequency response function of periodic 

foundation with different number of unit cells 

 

4.3. Effect of multilayered unit cells 

In this section, the effect of multilayered unit cell 

as a combination of two different unit cells is studied. 

The first periodic foundation (designated as unit cell-

1) is composed of Layer A (made of rubber material) 

with a layer thickness of 0.2 m and Layer B (made of 

concrete material) with a layer thickness of 0.2 m. 

The second foundation (designated as unit cell-2) is 

composed of Layer C (made of rubber material) with 

a layer thickness of 0.15 m and Layer D (made of 

concrete material) with a layer thickness of 0.25 m. 

Both periodic foundations have plane size of 3 m by 

3 m and seat on a concrete base (Fig.12(a) and 

Fig.12(b)). The third periodic foundation (designated 

as unit cell-3) is composed of all four layers 

composing the two periodic foundations mentioned 

above (Fig.12(c)). The material properties follow 

Table 2. 

 

 
(a) (b) 

 
(c) 

Figure 12. (a) Unit cell-1, (b) Unit cell-2, and (c) 

Unit cell-3 

 

The FRF of each of the three foundations 

subjected to transverse wave can be seen inFig.13. 

For both the periodic foundation made of unit cell-1 

and the periodic foundation made of unit cell-2, the 

FRF values are found to be negative inside the 

theoretical frequency band gap. The frequency band 

gap of the unit cell-1 and unit cell-2 can be seen 

overlapping one another. Therefore, the unit cell-3, 

which is the combination of the two unit cells, is 

presumed to have frequency band gap coming from 

the union of the two frequency band gaps (7 Hz to 50 

Hz). However, Fig.13(c) shows that the FRF has a 

positive peak around frequency 17 Hz which 

represents amplification inside the combined 

frequency band gap. This result invalidates the 

previous presumption. 

The contradicting result indicates that the 

frequency band gap of four-layer unit cell is not the 

union of the frequency band gaps of two separate 

two-layer unit cells. Therefore the frequency band 

gap of the four-layer unit cells is calculated. 

Using the transfer matrix method, the theoretical 

frequency band gap of the four-layer unit cell is 

obtained, as shown in Fig.14. It is observed that 

multiple frequency band gaps are located very close 

to each other in the region of 7.37 Hz to 50 Hz. The 

pass bands that separate the frequency band gaps in 

this region are 17.36 Hz –17.85 Hz, 23.14 Hz –23.45 

Hz, 33.32 Hz–33.44 Hz, 44.16 Hz–44.22Hz, and 

49.38Hz–49.48Hz. These very thin pass bands 

responsible for the amplification of the response at 17 

Hz and peak FRFs at 23 Hz, 33 Hz, 44.5 Hz, and 50 

Hz. Since the pass band is very small, some peaks 

still have negative FRF values representing the 

response reduction. 

 
(a) 

 
(b) 
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(c) 

Figure 13. Frequency response function (a) Unit 

cell-1, (b) Unit cell-2, and (c) Unit cell-3 

 

 
(a) 

 
(b) 

Figure 14. (a) Theoretical band gap of unit cell-3 

(b) FRF of unit cell-3 

 

4.4. Effect of superstructure 

As periodic foundation is designed to support a 

superstructure, the presence of superstructure in 1D 

periodic foundation may affect the frequency 

response function curve. Fig.15(a) illustrates a 

superstructure seating on a 1D periodic foundation. 

The mass and stiffness of the superstructure are 

tuned, so that the natural frequency of the 

superstructure alone is 10 Hz (typical natural 

frequency of nuclear reactor building or low rise 

building). Fig.15(b) shows that the FRF curves of the 

1D periodic foundation with superstructure (red and 

blue curves) are quite different especially for the 

attenuation zone in the first band as compared to that 

of 1D periodic foundation without superstructure 

(black curve). 

Performing finite element analysis of the full 

superstructure with periodic foundation can be time 

consuming. Since the presence of superstructure will 

alter the FRF curve especially in the first frequency 

band gap, it is more convenient if one can predict the 

altered frequency band gap without having to model 

the entire superstructure. This is important especially 

during the preliminary design phase. 

 
(a) 

 
(b) 

Figure 15. (a) 1D periodic foundation with 

superstructure (b) FRF of 1D periodic foundation 

with superstructure 

 

When the superstructure is stiff enough (such as 

nuclear reactor building), the superstructure can be 

transformed into an equivalent additional layer of a 

unit cell, as shown inFig.16. The superstructure is 

assumed as an additional layer with thickness h*s, 

which can be set the same as the upmost concrete 

layer hc. The total weight of the superstructure is then 

transferred into an equivalent density by dividing the 

total weight with the multiplication of the designed 
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cross sectional area (horizontal area) of the periodic 

foundation and the additional layer thickness. 

 
Figure 16.Unit cell with equivalent superstructure 

layer 

 

The corresponding frequency band gaps of the 

unit cell with equivalent superstructure layer are 

shown in Fig.17. It is observed that the negative 

values in the FRF curves of 1D periodic foundation 

with superstructure (blue and red curves in Fig.15(b)) 

coincide with the theoretical frequency band gaps of 

unit cell with equivalent superstructure layer. 

Therefore, to predict the altered frequency band gap 

due to the presence of superstructure, it is much more 

convenient to solve for the dispersion curve of the 

multi-layer unit cell with equivalent layer of 

superstructure. 

 
Figure 17.Theoretical band gap of unit cell with 

equivalent superstructure layer 

 

4.5.Damping in 1D periodic foundation 

It is explained in structural dynamics that the 

damping effect will reduce the structural 

response[22]. In 2009, Hussein [23] introduced the 

theory of damping in phononic crystal.This section 

will discuss the effect of damping in 1D periodic 

foundation. For under-damped condition, the wave 

propagation will experience amplitude decay and 

shortening of frequency. The damped frequency can 

be obtained using equation (20). Therefore, each 

wave number k will have corresponding damped 

natural frequencies and subsequently the damped 

dispersion curve can be obtained [51]. 

2

dω ( ) ω( ) 1 ζ( )k k k   (20) 

Assuming the damping in the whole body of 1D 

periodic foundation is 10%. The damped and 

undamped dispersion curvesare shown inFig.18. It 

can be observed that the difference in the 

undampedand the damped dispersion curves is 

negligible. Therefore, in periodic foundation, the 

frequency band gap of the damped unit cell can be 

considered the same as the undamped unit cell. 

 
Figure 18. Dispersion curve of damped unit cell 

 

 
Figure 19. FRF of damped unit cell 

 

Consider the Case B1 periodic foundation in 

Section 4.2. The damping ratio of 4% and 10% are 

assigned to the concrete and rubber layers, 

respectively. The FRF curves of the periodic 

foundation with and without damping are shown 

inFig.19. It can be seen that inside the frequency 

band gap, the FRF values of the damped and 

undamped periodic foundations are the same since 

the waves are not propagated through the periodic 

foundations. Outside the frequency band gap, the 

response are reduced tremendously especially in the 

pass band after the first frequency band gap. 

Therefore, damping contribution is very significant to 

reduce the response outside the frequency band gap. 

 

V. DESIGN GUIDELINES OF 1D PERIODIC 

FOUNDATION 
Based on the parametric study shown in Section 

III, it is very clear that the change in the starting 

frequency band gap and the band width due to the 

change of material and geometric properties follow 

certain pattern. If the pattern can be quantified, the 

frequency band gap can be calculated without solving 

the wave equation. 



WitartoWitarto et al. Int. Journal of Engineering Research and Applications                www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 1, (Part - 6) January 2016, pp.05-15  

 www.ijera.com                                                                                                                                  13|P a g e  

The parametric study was conducted by first 

assuming a reference or benchmark unit cell. The unit 

cell size of the periodic foundation is set to be 0.4 m 

with a rubber to concrete thickness ratio of one.  The 

dispersion curve of the benchmark unit cell under S-

Wave and P-Wave are shown inFig.3. The first 

frequency band gap under S-Wave starts at 13.51 Hz 

with a band width of 17.36 Hz. While the first 

frequency band gap under P-Wave starts at 51.5 Hz 

with a band width of 66.1 Hz. Since the damping will 

reduce the responses at the pass bands after the first 

frequency band gap, therefore only the first 

frequency band gap is considered in the development 

of design guidelines. 

 
Figure 20. Regression for the effect of Young’s 

modulus of rubber on the starting of frequency 

band gap under S-Wave 

 

Each of the material and geometric properties 

was changed while keeping the rest of the properties 

constant. The change in the frequency band gaps due 

to a certain parameter is observed to follow a certain 

pattern. The results are then fitted with a regression 

curve that provides the simplest and the closest 

equation to the data points. The regression curve for 

the starting of frequency band gap under S-Wave as a 

function of Young’s modulus of rubber is shown in 

Fig.20. The chosen power equation can accurately fit 

the data points. 

The Young’s modulus and Poisson’s ratio of 

concrete were not included since they do not have 

any effect on the frequency band gap. The obtained 

equations were normalized with the starting of 

frequency band gap obtained from the unit cell with a 

set of reference properties, which is 13.51 Hz. The 

normalization turns the regression equations into a 

modification factor. These modification factors will 

modify the frequency band gap of the unit cell with 

respect to the set of reference properties. The final 

equations to find the starting of frequency band gap 

and the band width under both S-Wave and P-Wave 

are shown in equations(21)to (24). 

Starting of frequency band gap (S-Wave)= 

   1 2 3 4 5 613.51F F F( ) ( ) ( ( F F)F )r r r cE T r    (21) 

 

Band width (S-Wave) =  

   1 2 3 4 5 617.36G G G( ) ( ) ( ( G G)G )r r r cE T r   (22) 

 

Starting of frequency band gap (P-Wave)  = 

   1 2 3 4 5 6( ) ( ) (51.5H H H H )H) ( Hr r r cE T r   (23) 

 

Band width (P-Wave) = 

   1 2 3 4 5 6( ) ( ) (66.1I I I I )I) ( Ir r r cE T r    (24) 

 

with the modification factors as follow: 
3 0.5003

1F ( ) 1.3094 10r rE E   

5

2 4

2.814 1.627 10
F ( )

13.51 13.6451 10

r
r

r






 


 
 

0.6263

3F ( ) 0.4139 1.2561r r     

0.03885

4F ( ) 14.937 10.0518c c     

5F ( ) 0.4 /T T  

2.878 0.01594

6F ( ) 0.6403e 0.9489er rr    

3 0.4996

1G ( ) 1.3185 10r rE E   

0.5964

2G ( ) 98.0991 0.3632r r     

0.6325

3G ( ) 0.4112 1.2523r r     

0.03885

4G ( ) 11.6244 9.6025c c      

5G ( ) 0.4 /T T  

0.8319

6G ( )r r  

3 0.5

1H ( ) 1.3122 10r rE E   

5

2 5

8.978 6.493 10
H ( )

51.5 5.9431 10

r
r

r






 


 
 

1.945 71.9916

3H ( ) 0.3076e 5.9728 10 er r

r

      

0.04212

4H ( ) 14.0932 9.1689c c     

5H ( ) 0.4 /T T  

2.838 0.01595

6H ( ) 0.62738e 0.94796er rr    

3 0.4999

1I ( ) 1.3145 10r rE E   

0.5954

2I ( ) 97.6097 0.3657r r     

1.947 71.9916

3I ( ) 0.3074e 5.9592 10 er r

r

      

0.04212

4I ( ) 10.9803 8.9228c c      

5I ( ) 0.4 /T T  

0.8321

6I ( )r r   

 

WhereE is the Young’s modulus, ρ is the density, and 

ν is the Poisson’s ratio. Each of the subscriptsr and 

cshowsthat material properties belongs to rubber or 

concrete, respectively. The unit cell thickness and the 

rubber to concrete thickness ratio are denoted by T 

and r, respectively. 

This set of equations ((21)to (24)) is very 

convenient to be used for design. Suppose that the 

frequency band gap is the design objective, while the 

R
2

 = 1 
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materials are given from the product in the market. 

Hence, the unit cell size and rubber to concrete 

thickness ratio can be tuned to obtain the desired 

frequency band gap.For example, the materials that 

will be used for the design is a high density concrete 

and soft rubber with properties shown in Table 3. The 

periodic foundation is expected to have starting 

frequency of band gap at around 6 Hz. The unit cell 

size are then designed as 2 m with a rubber to 

concrete thickness ratio of 1. The frequency band 

gaps under S-Wave and P-Wave calculated using 

equations(21) to (24)are 6.44–14.51 Hz and 21.18–

50.01 Hz, respectively.  Detail calculations are shown 

below: 

 Starting of frequency band gap (S-Wave)  

   1 2 3 4 5 613.51F F F( ) ( ) ( F F) ( )Fr r r cE T r    

13.51 2.278 1.08 1 0.968 0.2 1 6.44Hz         

 Band width (S-Wave)  

   1 2 3 4 5 617.36G G G( ) ( ) ( G G) ( )Gr r r cE T r  

17.36 2.27 1 1 1.025 0.2 1 8.07Hz         

 Starting of frequency band gap (P-Wave)  

   1 2 3 4 5 651.5H H H( ) ( ) ( H H) ( )Hr r r cE T r    

51.5 2.273 1 0.936 0.968 0.2 1 21.18Hz         

 Band width (P-Wave) 

   1 2 3 4 5 666.1I I I( ) ( ) ( I I) ( )Ir r r cE T r    

66.1 2.273 1 0.935 1.025 0.2 1 28.83Hz         

 

Table 3. Material properties for designed 1D 

periodic foundation 

Material 

Young’s 

modulus 

(MPa) 

Density 

(kg/m
3
) 

Poisson’s 

ratio 

Concrete 40000 2500 0.2 

Rubber 3 1300 0.463 

 

The dispersion curves obtained from solving the 

wave equation are shown in Fig.21. The first 

frequency band gap under S-Wave is observed to be 

at 6–14 Hz. While under P-Wave, the first frequency 

band gap is observed to be at 22.7–53.48 Hz. The 

proposed method is proven that can accurately 

predict the theoretical frequency band gap. 

 

 
Figure 21. Dispersion curve of designed 1D unit 

cell under (a) S-Wave (b) P-Wave 

 

VI. CONCLUSIONS 
Theoretical studies have been conducted to 

investigate the behavior of 1D periodic foundations 

as seismic isolators. In order to get lower and wider 

frequency band gaps, the unit cell must consists of at 

least two contrasting components, i.e. stiff and dense 

component as well as light and soft component. In 

the real application one unit cell is capable of 

isolating the waves having frequencies inside the 

theoretical frequency band gap. The more unit cells, 

the better the waves attenuation. Large plane size to 

the total thickness of periodic foundation is necessary 

in order to eliminate the undesirable rocking mode. 

The present of damping is certainly beneficial to 

reduce the amplification on the pass bands. The 

presence of superstructure can be beneficial as it 

alters the first frequency band gap to become lower 

and wider. A set of simple equations to predict the 

first frequency band gap is developed for the design 

of 1D periodic foundations. The equation is straight 

forward and can be applied directly in the design 

without solving the wave equation.  

The analytical studies have shown that 1D 

periodic foundation is very promising for seismic 

base isolation system. Experimental test needs to be 

conducted to prove the obtained analytical results. 

Therefore, an experimental program on 1D periodic 

foundation is currently under preparation and will be 

conducted in the coming years. 
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